Задача. Перед нами 10 закрытых замков и 10 похожих ключей к ним. К каждому замку подходит только один ключ, но ключи смешались. Возьмем один из замков, назовем его первым и попробуем открыть его каждым из 10 ключей. В лучшем случае он откроется первым же ключом, а в худшем - только десятым. Сколько нужно в худшем случае произвести проб, чтобы открыть все замки?

Ответ: Для 1-го замка достаточно 9 проб (10-я не обязательна), для 2-го - 8, для 3-го - 7 и т.д., а для оставшегося 10-го не требуется ни одной. Общее число проб составит 9+8+7+...+1+0 = 45.

Категория: Комбинаторика | Просмотров: 58 | Добавил: Admin | Дата: 25.09.2019 | Комментарии (0)

11 Сколько шестизначных чисел (без повторения цифр) можно составить из цифр: а) 1,2, 5, 6, 7, 8; б) 0, 2, 5, 6, 7, 8?
 Решение.

а) Дано 6 цифр: 1, 2, 5, 6, 7, 8, из них можно составлять разные шестизначные числа, только переставляя эти цифры местами. Количество различных шестизначных чисел при этом равно  $Р_6 = 6! = 720$.

б) Дано 6 цифр: 0, 2, 5, 6, 7, 8, из них нужно составлять различные шестизначные числа. Отличие от предыдущей задачи состоит в том, что ноль не может стоять на первом месте.

Можно напрямую применить правило произведения: на первое место можно выбрать любую из 5 цифр (кроме нуля); на второе место - любую из 5 оставшихся цифр (4 «ненулевые» и теперь считаем ноль); на третье место - любую из 4 оставшихся после первых двух выборов цифр, и т. д. Общее количество вариантов равно:  $5*5*4*3*2*1= 600$.

Можно применить метод исключения лишних вариантов. 6 цифр можно переставить  $Р_6 = 6! = 720$  различными способами. Среди этих способов будут такие, в которых на первом месте стоит ноль, что недопустимо. Подсчитаем количество этих недопустимых вариантов. Если на первом месте стоит ноль (он фиксирован), то на последующих пяти местах могут стоять в произвольном порядке «ненулевые» цифры 2, 5, 6, 7, 8. Количество различных способов, которыми можно разместить 5 цифр на 5 местах, равно  $Р_5 = 5! = 120$, т. е. количество перестановок чисел, начинающихся с нуля, ... Смотреть решение »

Категория: Комбинаторика | Просмотров: 194 | Добавил: Admin | Дата: 07.11.2018 | Комментарии (0)

Перестановки без повторений

Перестановками из n элементов называются различные упорядочения множества  X .
Из этого определения следует, что две перестановки отличаются только порядком элементов и их можно рассматривать как частный случай размещений.
Формула: Число различных перестановок без повторений вычисляется по формуле

$$P_n=n!=n \cdot (n-1) \cdot (n-2) \cdot ...\cdot 2 \cdot 1$$

Заметим, что в любую перестановку входят все элементы множества Х, причём ровно по одному разу. То есть перестановки одна от другой отличаются только порядком следования элементов и могут получиться одна из другой перестановкой элементов (отсюда и название).

 Пример. Сколькими способами можно разместить на полке 5 книг?

Решение. Способов размещения книг на полке существует столько, сколько существует различных перестановок из пяти элементов: $P_5=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$ способов.

Замечание. Формулу перестановок всегда можно заменить более универсальным правилом произведения

Задачи:

1. Сколькими способами могут встать в очередь в билетную кассу: 1) 3 человека; 2) 5 человек?

Решение.

Различные варианты расположения п человек в очереди отличаются один от другого только порядком расположения людей, т. е. являются разл ... Смотреть решение »

Категория: Комбинаторика | Просмотров: 572 | Добавил: Admin | Дата: 07.11.2018 | Комментарии (0)

1 2 3 ... 14 15 »