Четверг, 08.12.2016, 23:06
Главная Регистрация RSS
Вы вошли как Гость | Группа "Гости"Приветствую Вас, Гость
Поделиться
Статистика
Яндекс.Метрика
Flag Counter
Онлайн всего: 44
Гостей: 44
Пользователей: 0
» »
00:19
В специализированную больницу поступают в среднем 50% больных с заболеванием /С, 30%—с заболеванием L, 20%—с заболевани
Задача 101.( Гмурман, формула Байеса )
В специализированную больницу поступают в среднем 50% больных с заболеванием /С, 30%—с заболеванием L, 20%—с заболеванием М. Вероятность полного излечения болезни К равна 0,7; для болезней L и М эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найти вероятность того, что этот больной страдал заболеванием К.

Краткое решение.
 Введем обозначения: событие: А - больной выпишется здоровым

Предположения (гипотезы):
B1 - страдал болезнью К
В2 - .Л
В3 - .М
Вероятности гипотез:
P(В1) = 0.5
P(B2) = 0.3
P(В3) = 0.2
Условные вероятности:
0.7 = Вероятность А при условии В1
0.8 = Вероятность А при условии В2
0.9 = Вероятность А при условии В3

По формуле полной вероятности:
P(A) = P (B1)* (P от А при усл.B1) + P(B2) * (P от A при усл.B2) + P(B3) * (P от А при усл.B3) = 0.5*0.7+0.3*0.8+0.2*0.9 = 0.77

Тогда P от B1 при усл.А - по Байесу:
P от B1 при усл.А = [ P (B1)* P от А при усл.B1 ] / P(A) = 0.5*0.7 / 0.77 = 0.45

Ответ: 0.45 или 45%

Онлайн сервис:  решение контрольных работ по теории вероятности
Категория: Теория вероятности | Просмотров: 9965 | Добавил: Admin | Теги: формула Байеса, Формула полной вероятности, решение задач теории вероятности | Рейтинг: 5.0/1


Похожие материалы:

Всего комментариев: 0
avatar
  .