Вторник, 06.12.2016, 17:07
Главная Регистрация RSS
Вы вошли как Гость | Группа "Гости"Приветствую Вас, Гость
Поделиться
Статистика
Яндекс.Метрика
Flag Counter
Онлайн всего: 55
Гостей: 55
Пользователей: 0

Главная » Файлы » Решение задач

высшая математика, теория вероятностей...
(40.0Kb) 12.04.2013, 22:20
Задание 1: Два товароведа производят приемку партии товара по качеству. Вероятность того, что очередное изделие попадет к первому товароведу, составляет 0,55, а ко второму – 0,45. Первый товаровед выявляет дефектное изделие с вероятностью 0,05, второй – с вероятностью 0,15. Определить вероятность того, что в процессе приемки дефектное изделие будет обнаружено.

Задание 2: Формулы Бернулли и Лапласа.
Вероятность поражения мишени стрелком равна р. Найти вероятность того, что при п выстрелах мишень будет поражена ровно k раз, или от k1 до k2 раз:
а) п = 6 р = 0,4 k = 2.
б) п=100 р = 0,8 k = 86.

Задание 3: Случайные величины и их числовые характеристики.

Закон распределения р (Х = хi) дискретной случайной величины Х приведен в таблице.
Требуется: а) определить математическое ожидание М(Х), дисперсию D(Х) и среднее квадратическое отклонение случайной величины Х; б) построить график этого распределения.

Номер задачи рi Значения хi случайной величины Х
0 1 2 3 4 5
a) 0,16 0,35 0,31 0,12 0,03 0,03
б) 0,23 0,33 0,25 0,12 0,04 0,03

Задание 5. По данному статистическому распределению выборки вычислите: выборочную среднюю; выборочную дисперсию; выборочное среднее квадратическое отклонение (в первой строке указаны выборочные варианты xi, а во второй - соответствующие им частоты ni количественного признака X), построить полигон частот.

а) xi 10,3 11,0 11,7 12,4 13,1 13,8 14,5
ni 7 10 60 13 5 3 2

б) xi 24 30 36 42 48 54 60
ni 5 13 45 23 8 4 2
Категория: Решение задач
Просмотров: 921 | Загрузок: 161 | Рейтинг: 2.0/1


Другие материалы по теме ""

Всего комментариев: 0
avatar