Суббота, 10.12.2016, 04:00
Главная Регистрация RSS
Вы вошли как Гость | Группа "Гости"Приветствую Вас, Гость
Поделиться
Статистика
Яндекс.Метрика
Flag Counter
Онлайн всего: 6
Гостей: 6
Пользователей: 0

Как правильно вводить формулы на вольфрам альфа

Основные операции

  • Сложение a+b: a+b
  • Вычитание a-b: a-b
  • Умножение a\cdot b: a*b
  • Деление   \frac{a}{b}: a/b
  • Возведение в степень {{a}^{b}}: a^b
Примеры
  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).

Знаки сравнения

  • Меньше <: <
  • Больше >: >
  • Равно =: = или ==
  • Меньше или равно \le : <=
  • Больше или равно \ge : >=

Логические символы

  • И \wedge: &&
  • ИЛИ \vee: ||
  • НЕ \neg: !

Основные константы

  • Число \pi: Pi
  • Число e: E
  • Бесконечность \infty: Infinity или inf

Основные функции

\left(a=\operatorname{const} \right)

  • x^{a}: x^a

модуль x: abs(x)

  • \sqrt{x}: Sqrt[x]
  • \sqrt[n]{x}: x^(1/n)
  • a^{x}: a^x
  • \log_{a}x: Log[a, x]
  • \ln x: Log[x]
  • \cos x: cos[x] или Cos[x]
  • \sin x: sin[x] или Sin[x]
  • \operatorname{tg}x: tan[x] или Tan[x]
  • \operatorname{ctg}x: cot[x] или Cot[x]
  • \sec x: sec[x] или Sec[x]
  • \operatorname{cosec} x: csc[x] или Csc[x]
  • \arccos x: ArcCos[x]
  • \arcsin x: ArcSin[x]
  • \operatorname{arctg} x: ArcTan[x]
  • \operatorname{arcctg} x: ArcCot[x]
  • \operatorname{arcsec} x: ArcSec[x]
  • \operatorname{arccosec} x: ArcCsc[x]
  • \operatorname{ch} x: cosh[x] или Cosh[x]
  • \operatorname{sh} x: sinh[x] или Sinh[x]
  • \operatorname{th} x: tanh[x] или Tanh[x]
  • \operatorname{cth} x: coth[x] или Coth[x]
  • \operatorname{sech} x: sech[x] или Sech[x]
  • \operatorname{cosech} x: csch[x] или Csch[е]
  • \operatorname{areach} x: ArcCosh[x]
  • \operatorname{areash} x: ArcSinh[x]
  • \operatorname{areath} x: ArcTanh[x]
  • \operatorname{areacth} x: ArcCoth[x]
  • \operatorname{areasech} x: ArcSech[x]
  • \operatorname{areacosech} x: ArcCsch[x]
  • [19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)

Решение уравнений

Чтобы получить решение уравнения вида f(x)=0 достаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve[f[x]=0, x].

Примеры
  • Solve[Cos[x]+Cos[2x]+Sin[4x]=0,x] или Cos[x]+Cos[2x]+Sin[4x]=0;
  • Solve[x^5+x^4+x+1=0,x] или x^5+x^4+x+1=0;
  • Solve[Log[3,x^2+x+1]-Log[9,x^2]=0,x] или \Log[3,x^2+x+1]-Log[9,x^2]=0.

Если Ваше уравнение содержит несколько переменных, то запись: f[x, y,…,z]=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции f и т. д. Чтобы получить решение уравнения вида f(x,y,...,z)=0 по какой-либо одной из переменных, нужно написать в строке: Solve[f[x, y, …, z]=0, j], где j — интересующая Вас переменная.

Примеры
  • Cos[x+y]=0 или Solve[Cos[x+y]=0,x] или Solve[Cos[x+y]=0,y];
  • x^2+y^2-5=0 или Solve[x^2+y^2-5=0,x] или Solve[x^2+y^2-5=0,y];
  • x+y+z+t+p+q=9.

Решение неравенств

Решение в Wolfram Alpha неравенств типа f(x)>0, f\left( x \right) \geqslant 0 полностью аналогично решению уравнения f(x)=0. Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve[f[x]>0, x] или Solve[f[x]>=0,x].

Примеры
  • Cos[10x]-1/2>0 или Solve[Cos[10x]-1/2>0,x];
  • x^2+5x+10>=0 или Solve[x^2+5x+10>=0,x].

Если Ваше неравенство содержит несколько переменных, то запись: f[x, y,…,z]>0 или f[x, y,…,z]>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve[f[x, y,…,z]>0,j] или Solve[f[x, y,…,z]>=0,j], где j — интересующая Вас переменная.

Примеры
  • Cos[x+y]>0 или Solve[Cos[x+y]>0,x] или Solve[Cos[x+y]>0,y];
  • x^2+y^3-5<0 или Solve[x^2+y^3-5<0,x] или Solve[x^2+y^3-5<0,y];
  • x+y+z+t+p+q>=9.

Решение различных систем уравнений, неравенств и уравнений

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Примеры
  • x^3+y^3==9&&x+y=1;
  • x+y+z+p==1&&x+y-2z+3p=2&&x+y-p=-3;
  • Sin[x+y]+Cos[x+y]==Sqrt[3]/4&&x+y²=1;
  • Log[x+5]=0&&x+y+z<1.

Построение графиков функций

Сервис Wolfram Alpha поддерживает возможность построения графиков функций как вида f(x), так и вида f(x,y). Для того, чтобы построить график функции f(x) на отрезке x \in \left[ {a,b} \right] нужно написать в строке Wolfram Alpha: Plot[f[x],{x, a, b}]. Если Вы хотите, чтобы диапазон изменения ординаты y был конкретным, например y \in \left[ {c,d} \right], нужно ввести: Plot[f[x],{x, a, b},{y, c, d}].

Примеры
  • Plot[x^2+x+2, {x,-1,1}];
  • Plot[x^2+x+2, {x,-1,1},{y,-1,5}];
  • Plot[Sin[x]^x, {x,-Pi,E}];
  • Plot[Sin[x]^x, {x,-Pi,E},{y,0,1}].

Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:Plot[f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}].

Примеры
  • Plot[x&&x^2&&x^3, {x,-1,1},{y,-1,1}];
  • Plot[Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}].

Для того, чтобы построить график функции f(x,y) на прямоугольнике x \in \left[ {a,b} \right],y \in \left[ {c,d} \right], нужно написать в строке Wolfram Alpha: Plot[f[x, y],{x, a, b},{y, c, d}]. К сожалению, диапазон изменения аппликаты z пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции f(x,y) Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).

Примеры
  • Plot[Sin[x^2+y^2],{x,-1,-0.5},{y,-2,2}];
  • Plot[xy,{x,-4,4},{y,-4,4}].

Математический анализ

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы

Для того, чтобы найти предел последовательности \left\{ {{x_n}} \right\} нужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Примеры
  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции f(x) при x \to a можно совершенно аналогично: Limit[f[x], x -> a].

Примеры
  • Limit[Sin[x]/x, x -> 0];
  • Limit[(1-x)/(1+x), x -> −1].

Производные

Для того, чтобы найти производную функции f(x) нужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], {x, n}]. В том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: D[f[x, y, z,…,t], j], где j — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], {j, n}], где j означает тоже, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры
  • D[x*E^x, x];
  • D[x^3*E^x, {x,17}];
  • D[x^3*y^2*Sin[x+y], x];
  • D[x^3*y^2*Sin[x+y], y],
  • D[x/(x+y^4), {x,6}].

Интегралы

Для того, чтобы найти неопределенный интеграл от функции f(x) нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл \int\limits_a^b {f\left( x \right)dx} так же просто: Integrate[f[x], {x, a, b}] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры
  • Integrate[Sin[x]/x², x];
  • Integrate[x^10*ArcSin[x], x];
  • Integrate[(x+Sin[x])/x, {x,1,100}];
  • Integrate[Log[x^3+1]/x^5, {x,1,Infinity}].

Дифференциальные уравнения и их системы

Чтобы найти общее решение дифференциального уравнения F(x,y,y^{/},y^{//},...,y^{(n)}) = 0 нужно написать в строке WolframAlpha: F[x, y, y',y'',…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y',y'',…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: {f_1,f_2,…,f_n}, где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока-что не поддерживается.

Примеры
  • y'''+y''+y=Sin[x];
  • y''+y'+y=ArcSin[x];
  • y''+y+y^2=0;
  • y''=y, y[0]==0, y'[0]=4;
  • y+x*y'=x, y[6]=2;
  • y'''[x]+2y''[x]-3y'[x]+y=x, y[0]=1, y[1]=2, y'[1]=2;
  • {x'+y'=2, x'-2y'=4}.

Ошибки при работе с системой

Система может допускать некоторые ошибки при решении сложных задач. К примеру, если попытаться решить неравенство \frac{3x^2-18x+24}{2x-2}-\frac{3x-12}{2x^2-6x+4}<0, для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4)<0, то Wolfram|Alpha выдаст в качестве ответа промежуток x \in (-\mathcal {1}; 2) \cup (3; 4), в котором будет присутствовать точка 1, обращающая оба знаменателя исходного неравенства в 0. Так что весь риск и вся ответственность при использовании Wolfram|Alpha ложится на Вас. Скорее всего, данные недочеты будут скоро исправлены.

 

Разложение на множители

Например, разложить на множители

x2/3 - 3x + 12

Запишем как

factor x^2/3 - 3x + 12

и нажимаем равно (=). 

Например, разложить на слагаемые

Разложить на слагаемые

Запишем как

Partial fraction expansion(1-x^2)/(x^3+x)



используются формулы разложения функций в ряд Тейлора (Taylor series) и ряд Маклорена (Maclaurin series) или

Series expansion at x=0

Разложить в ряд Лорана:

Laurent expansion z*cos(1/z) at z =0

 

Чтобы упростить выражение f[x], наберите команду Simplify[f[x]]

Комплексно сопряженное z*

Египетская дробь:

Egyptian fraction expansion:

11/30=1/3+1/30
 
parametric plot (3*cos t, sin t, 2t), t=0..2pi
 
 interpolation polynomial {1,4,9,16}
Транспонировать матрицу:   transpose {{8,2,-3,2},{-6,3,-2,1},{3,8,4,-8},{2,1,-6,2}}
Обратная матрица inverse {{a, b}, {c, d}}
Собственные числа (вектора) матрицы:  eigenvalues( ( transpose{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}})-1/67.42598*({{8,2,-3,2},{-6,3,-2,1},{3,8,4,-8},{2,1,-6,2}}*{{8,2,-3,2},{-6,3,-2,1},{3,8,4,-8},{2,1,-6,2}}))
Решение СЛАУ :  {{8,2,-3,2},{-6,3,-2,1},{3,8,4,-8},{2,1,-6,2}}*{{x_1},{x_2},{x_3},{x_4}}={{102},{-47},{-122},{-24}}
{{-9,5,2},{5,-6,3},{4,1,-5}}*{{x},{y},{z}}={{0},{0},{0}}
Интегральное преобразование Лапласа  ----  LT
Обратное преобразование Лапласа  --    ILT