Суббота, 10.12.2016, 21:27
Главная Регистрация RSS
Вы вошли как Гость | Группа "Гости"Приветствую Вас, Гость
Поделиться
Статистика
Яндекс.Метрика
Flag Counter
Онлайн всего: 28
Гостей: 28
Пользователей: 0
» »
16:37
Формула включений и исключений

Формула включений и исключений

Пусть задано конечное множество А. Число его элементов обозначим n(А). Найдем сколько элементов содержится в множестве А ∪ В. Основная формула нахождения числа элементов суммы двух множеств

n(А ∪ В) = n(А) + n(В) – n(А ∩ В)        (1)

Действительно, n(А ∪ В) — это сумма числа элементов множеств А и В, но при подсчете элементы, принадлежащие А ∩ В учитывались дважды. С помощью формулы (1) можно получить формулы для определения числа элементов суммы любого числа множеств. Например,

n(А ∪ В ∪ С) = n(А ∪ (В ∪ С)) = n(А) + n(В ∪ С) – n(А ∩ (В ∪ С)) =

= n(А) + n(В) + n(С) – n(В ∩ С) – n((А ∩ В) ∪ (А ∩ С)) =

= n(А) + n(В) + n(С) – n(В ∩ С) – (n(А ∩ В) + n(А ∩ С) – n((А ∩ В) ∩ (А ∩ С))) =

=n(А) + n(В) + n(С) – n(В ∩ С) – n(А ∩ В) – n(А ∩ C) + n(А ∩ В ∩ С).

n(А ∪ В ∪ С) = n(А) + n(В) + n(С) – n(А ∩ В) – n(В ∩ С) – n(А ∩ C) + n(А ∩ В ∩ С)    (2)

Формулы (1) и (2) называют формулами включений и исключений.

Примеры с подробным решением.

Задача 1. Из 100 школьников английский знают 42, немецкий — 30, французский — 28, английский и немецкий — 5, английский и французский — 10, немецкий и французский — 8, английский, немецкий и французский — 3 школьника. Сколько школьников не знают ни одного языка?

Решение. I способ.

Обозначим через А — множество школьников, знающих английский язык; N — множество школьников, знающих немецкий язык; F — множество школьников, знающих французский язык.

Тогда n(A) = 42, n(N) = 30, n(F) = 28, n(A ∩ N) = 5,

n(A ∩ F) = 10, n(N ∩ F) = 8, n(A ∩ N ∩ F) = 3.

Найдем с помощью формулы включений и исключений количество школьников, знающих хотя бы один из перечисленных иностранных языков.

n(A ∪ N ∪ F) = n(A) + n(N) + n(F) =

= n(A ∩ N) – n(A ∩ F) – n(N ∩ F) + n(A ∩ N ∩ F) =

= 42 + 30 + 28 – 5 – 10 – 8 + 3 = 80.

Следовательно, не знают ни одного иностранного языка:

100 – 80 = 20 школьников.

II способ.

Эту же задачу можно решить с помощью диаграммы Эйлера–Венна (рис. 1).

Так как 3 языка знают 3 школьника, то английский и немецкий знают 5 – 3 = 2, английский и французский — 10 – 3 = 7,

немецкий и французский — 8 – 3 = 5 школьников.

Только английский знают 42 –(2 + 3 + 7) = 30,

только немецкий — 30 – (2 + 3 + 5) = 20,

только французский — 28 – (3 + 5 + 7) = 13 школьников.

Ни одного языка не знают 100 – (2 + 3 + 5 + 7 + 13 + 20 + 30) = 20 школьников.

Задача 2. Сколько двузначных чисел не делятся ни на 2, ни на 3, ни на 5, ни на 11?

Решение. Обозначим: А — множество двузначных чисел, делящихся на 2;

В — множество двузначных чисел, делящихся на 3;

С — множество двузначных чисел, делящихся на 5;

D — множество двузначных чисел, делящихся на 11.

n(A ∪ B ∪ C ∪ D) — количество двузначных чисел, делящихся хотя бы на одно из чисел 2; 3; 5; 11.

n(A ∪ B ∪ C ∪ D) = n(A) + n(B) + n(C) + n(D) –

– n(A ∩ B) – n(A ∩ C) – n(A ∩ D) – n(B ∩ C) –

– n(B ∩ D) – n(C ∩ D) + n(A ∩ B ∩ C) + n(A ∩ B ∩ D) +

+ n(A ∩ C ∩ D) + n(B ∩ C ∩ D) – n(A ∩ B ∩ C ∩ D).

n(A) = 45, n(B) = 30, n(C) = 18, n(D) = 9,

n(A ∩ B) = 15, n(A ∩ C) = 9, n(A ∩ D) = 4, n(B ∩ C) = 6,

n(B ∩ D) = 3, n(C ∩ D) = 1, n(A ∩ B ∩ C) = 3,

n(A ∩ B ∩ D) = 1, n(A ∩ C ∩ D) = n(B ∩ C ∩ D) = n(A ∩ B ∩ C ∩ D) = 0.

Итак, n(A ∪ B ∪ C ∪ D) = 45 + 30 +18 + 9 – 15 – 9 – 4 – 6 – 3 – 1 + 3 + 1  = 68.

Так как всего 90 двузначных чисел, то чисел, не делящихся ни на одно из заданных чисел:

90 – 68 = 22.

Задача 3. Известно, что из n учеников спортом увлекаются a учеников, программированием b, математикой c, спортом и программированием d, спортом и математикой e, программированием и математикой f , спортом, математикой и программированием g учеников. Сколько учеников увлекается только программированием? Сколько учеников увлекается только математикой? Сколько учеников ничем не увлекается?

Вариант

n

a

b

c

d

e

f

g

14

70

32

21

23

8

12

4

3

 

Решение. Пусть A —множество учеников, которые увлекаются спортом,

B — программированием, С - математикой.

Тогда |A| = 32, |B| = 21, |C| = 23, |A ∩ B| = 8, |A ∩ C| = 12, |B ∩ C| =4 |A ∩ B ∩ C| = 3

|(A ∩ B) ∪ ( B ∩ C) | = |A ∩ B| + |B ∩ C| − |A ∩ B ∩ C| = 8 + 4 – 3 = 9

Тогда, только программированием занимается 21 – 9 = 12 учеников.

|(A ∩ C) ∪ ( B ∩ C) | = |A ∩ C| + |B ∩ C| − |A ∩ B ∩ C| = 12 + 4 – 3 = 13

Тогда, только математикой занимается 23 – 13 = 10 учеников.

По формуле включений и исключений для трёх множеств находим число учеников увлекающихся спортом, программированием или математикой:

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B∩ C| = =32+21+23-8-12-4+3 = 55

Значит, ничем не увлекается 70 − 55 = 15 человек. Ответ: 15.

 

Упражнения

1. В спортивном классе обучаются 24 человека. Каждый учащийся занимается хотя бы одним видом спорта (баскетболом или волейболом), из них баскетболом и волейболом занимаются 12 человек. Сколько человек занимается только волейболом, если их в 3 раза больше, чем тех, кто занимается только баскетболом?

2. В одном украинском городе все жители говорят на русском или украинском языке. По-украински говорят 80 % всех жителей, а по-русски — 75 %. Сколько процентов всех жителей говорят на обоих языках?

3. Группа ребят отправилась в поход. Семеро из них взяли с собой бутерброды, шестеро — фрукты, пятеро — печенье. Четве- ро ребят взяли с собой бутерброды и фрукты, трое — бутерброды  и печенье, двое — фрукты и печенье, а один — и бутерброды, и фрукты, и печенье. Сколько ребят пошли в поход?

4. Староста класса, в котором 40 человек, подводил итоги по успеваемости группы за I полугодие. Получилась следующая картина: из 40 учащихся не имеют троек по русскому языку 25 человек, по математике — 28 человек, по русскому языку и мате- матике — 16 человек, по физике — 31 человек, по физике и ма- тематике — 22 человека, по физике и русскому языку 16 человек. Кроме того, 12 человек учатся без троек по всем трем предметам. Классный руководитель, просмотрев результаты, сказал: «В тво- их расчетах есть ошибка». Составьте диаграмму Эйлера–Венна и объясните, почему это так.

5. В лаборатории института работают несколько человек. Каждый из них знает хотя бы один иностранный язык. 7 человек знают английский, 7 — немецкий, 8 — французский, 5 знают английский и немецкий, 4 — немецкий и французский, 3 — французский и английский, 2 человека знают все три языка. Сколько человек работает в лаборатории? Сколько из них знает только французский язык? Сколько человек знает ровно 1 язык?

6. Сколько целых чисел от 0 до 999 не делятся ни на 5, ни на 7, ни на 11?

Ответы: 1. 9. 2. 55 %. 3. 10. 4. Если на диаграмме Эйлера– Венна отметить данные в непересекающихся множествах класса, то общее число учащихся класса получится равным 42, а не 40, как сказано в условии. 5. 12; 3; 4. 6. 376.

Категория: Теория множеств | Просмотров: 699 | Добавил: Admin | Теги: множества | Рейтинг: 0.0/0



Всего комментариев: 0
avatar
  .