Суббота, 10.12.2016, 06:03
Главная Регистрация RSS
Вы вошли как Гость | Группа "Гости"Приветствую Вас, Гость
Поделиться
Статистика
Яндекс.Метрика
Flag Counter
Онлайн всего: 6
Гостей: 6
Пользователей: 0
» »
12:55
Операции над множествами

Операции над множествами

  • Объеденением множеств $A$ и $B$ называется множество $$A∪B=\left \{ x|(x∈A)∨(x∈B)\right \}$$
  • Пересечением множеств $A$ и $B$ называется множество $$ A∩B=\{x|(x∈A)∧(x∈B)\} $$
  • Множество, стостоящее из всех элементов множества $A$, не принаждлежащих множеству $B$, называется разностью множеств $A$ и $B$: $$ A\setminus B=\{x|(x\in A)\wedge (x\notin B)\}.$$
    • Если $A⊂B$ , то $B\setminus A$ называют дополнением множества $A$ до множства $B:A'_B.$ 
    • Если, в частности, $A−$ подмножество некоторого универсального множества $U$, то разность $ U\setminus A $ обозначается символом $\bar{A}$ или $A′$ и называется дополнением множества $A$ (до множества $U$).

 

  • Симметрической разностью множеств $A$ и $B$ называют множество $AΔB$, состоящее из тех и только тех элементов, которые принадлежат только одному из множеств $A$ или $B$, то есть $$ AΔB=(A ∖ B)∪(B ∖ A). $$

 

Примеры операций над множествами

Пример 1. Даны множества $A=\{3,5,7,8,9\}$ и $B=\{2,3,7,8, 10\}$

Найти:  $ A ∩ B $,   $ A ∪ B $ ,   $ A \setminus B $,   $ A ∆ B $

Решение.

  • $$ A∩B=\{3,5,7,8,9\}∩\{2,3,7,8, 10\} = \{3,7,8\} $$
  • $$ А ∪ B=\{3,5,7,8,9\}∪\{2,3,7,8, 10\} = \{2,3,5,7,8,9,10\}$$
  • $$ A \setminus B=\{3,5,7,8,9\}\{2,3,7,8, 10\} = \{5,9\} $$
  • $$ A \Delta B=\left \{3,5,7,8,9\right \} \setminus \left \{2,3,7,8, 10\right \} ∪ \left \{2,3,7,8, 10\right \} \setminus \left \{3,5,7,8,9\right \} = $$ $$=\{3,7,8\}∪\{2,10\} = \{2,3,7,8,10\} $$

Пример 2.

Даны множества $A=\{\{a,d\},\{a,b,c\},\{a\},a,b\}$ и $B=\{\{a,b,c,d\},\{a,b,c\},\{a,b\},a\}$

Найти:  $ A ∩ B $,   $ A ∪ B $ ,   $ A \setminus B $,   $ A ∆ B $

Решение.

  • $$ A ∩ B=\{\{a,d\},\{a,b,c\},\{a\},a,b\}∩\{\{a,b,c,d\},\{a,b,c\},\{a,b\},a\} = $$ $$ =\{a, \{a, b, c\}\} $$
  • $$ A ∪ B=\{\{a,d\},\{a,b,c\},\{a\},a,b\}∪ \{\{a,b,c,d\},\{a,b,c\},\{a,b\},a\} = $$ $$ =\{a, b, \{a\}, \{a, b\}, \{a, d\}, \{a, b, c\}, \{a, b, c, d\}\}$$
  • $$ А \setminus В=\{\{a,d\},\{a,b,c\},\{a\},a,b\}\setminus \{\{a,b,c,d\},\{a,b,c\},\{a,b\},a\} = $$ $$= \{b,\{a\},\{a,d\}\} $$
  • $$ A \Delta B=\{\{a,d\},\{a,b,c\},\{a\},a,b\}\setminus \{\{a,b,c,d\},\{a,b,c\},\{a,b\},a\}∪ $$ $$ ∪ \{\{a,b,c,d\},\{a,b,c\},\{a,b\},a\}\setminus \{\{a,d\},\{a,b,c\},\{a\},a,b\} = $$ $$=\{b,\{a\},\{a,b\},\{a,d\},\{a,b,c,d\}\}$$

Калькулятор вычислений над множествами.

Примечание:

Операция

Обозначения

математические

в калькуляторе

Пересечение

intersection

Объединение

union

Разность

\

difference

Симметрическая разность

symmetric difference

 

Категория: Теория множеств | Просмотров: 960 | Добавил: Admin | Теги: множества | Рейтинг: 0.0/0



Всего комментариев: 0
avatar
  .